412 research outputs found

    Structure maps for hcp metals from first principles calculations

    Full text link
    The ability to predict the existence and crystal type of ordered structures of materials from their components is a major challenge of current materials research. Empirical methods use experimental data to construct structure maps and make predictions based on clustering of simple physical parameters. Their usefulness depends on the availability of reliable data over the entire parameter space. Recent development of high throughput methods opens the possibility to enhance these empirical structure maps by {\it ab initio} calculations in regions of the parameter space where the experimental evidence is lacking or not well characterized. In this paper we construct enhanced maps for the binary alloys of hcp metals, where the experimental data leaves large regions of poorly characterized systems believed to be phase-separating. In these enhanced maps, the clusters of non-compound forming systems are much smaller than indicated by the empirical results alone.Comment: 7 pages, 4 figures, 1 tabl

    Electronic transport properties of quasicrystals: a Review

    Full text link
    We present a review of some results concerning electronic transport properties of quasicrystals. After a short introduction to the basic concepts of quasiperiodicity, we consider the experimental transport properties of electrical conductivity with particular focus on the effect of temperature, magnetic field and defects. Then, we present some heuristic approaches that tend to give a coherent view of different, and to some extent complementary, transport mechanisms in quasicrystals. Numerical results are also presented and in particular the evaluation of the linear response Kubo-Greenwood formula of conductivity in quasiperiodic systems in presence of disorder.Comment: Latex, 28 pages, Journ. of Math. Phys., Vol38 April 199

    Thermodynamic properties of binary HCP solution phases from special quasirandom structures

    Get PDF
    Three different special quasirandom structures (SQS) of the substitutional hcp A1xBxA_{1-x}B_x binary random solutions (x=0.25x=0.25, 0.5, and 0.75) are presented. These structures are able to mimic the most important pair and multi-site correlation functions corresponding to perfectly random hcp solutions at those compositions. Due to the relatively small size of the generated structures, they can be used to calculate the properties of random hcp alloys via first-principles methods. The structures are relaxed in order to find their lowest energy configurations at each composition. In some cases, it was found that full relaxation resulted in complete loss of their parental symmetry as hcp so geometry optimizations in which no local relaxations are allowed were also performed. In general, the first-principles results for the seven binary systems (Cd-Mg, Mg-Zr, Al-Mg, Mo-Ru, Hf-Ti, Hf-Zr, and Ti-Zr) show good agreement with both formation enthalpy and lattice parameters measurements from experiments. It is concluded that the SQS's presented in this work can be widely used to study the behavior of random hcp solutions.Comment: 15 pages, 8 figure

    An empirical test for cellular automaton models of traffic flow

    Full text link
    Based on a detailed microscopic test scenario motivated by recent empirical studies of single-vehicle data, several cellular automaton models for traffic flow are compared. We find three levels of agreement with the empirical data: 1) models that do not reproduce even qualitatively the most important empirical observations, 2) models that are on a macroscopic level in reasonable agreement with the empirics, and 3) models that reproduce the empirical data on a microscopic level as well. Our results are not only relevant for applications, but also shed new light on the relevant interactions in traffic flow.Comment: 28 pages, 36 figures, accepted for publication in PR

    Structure stability in the simple element sodium under pressure

    Full text link
    The simple alkali metal Na, that crystallizes in a body-centred cubic structure at ambient pressure, exhibits a wealth of complex phases at extreme conditions as found by experimental studies. The analysis of the mechanism of stabilization of some of these phases, namely, the low-temperature Sm-type phase and the high-pressure cI16 and oP8 phases, shows that they satisfy the criteria for the Hume-Rothery mechanism. These phases appear to be stabilized due to a formation of numerous planes in a Brillouin-Jones zone in the vicinity of the Fermi sphere of Na, which leads to the reduction of the overall electronic energy. For the oP8 phase, this mechanism seems to be working if one assumes that Na becomes divalent metal at this density. The oP8 phase of Na is analysed in comparison with the MnP-type oP8 phases known in binary compounds, as well as in relation to the hP4 structure of the NiAs-type

    Predicting Crystal Structures with Data Mining of Quantum Calculations

    Full text link
    Predicting and characterizing the crystal structure of materials is a key problem in materials research and development. It is typically addressed with highly accurate quantum mechanical computations on a small set of candidate structures, or with empirical rules that have been extracted from a large amount of experimental information, but have limited predictive power. In this letter, we transfer the concept of heuristic rule extraction to a large library of ab-initio calculated information, and demonstrate that this can be developed into a tool for crystal structure prediction.Comment: 4 pages, 3 pic

    The Structure of Barium in the hcp Phase Under High Pressure

    Full text link
    Recent experimental results on two hcp phases of barium under high pressure show interesting variation of the lattice parameters. They are here interpreted in terms of electronic structure calculation by using the LMTO method and generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II the dramatic drop in c/a is an instability analogous to that in the group II metals but with the transfer of s to d electrons playing a crucial role in Ba. Meanwhile in phase V, the instability decrease a lot due to the core repulsion at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx, 71.15LaComment: 29 pages, 8 figure

    Precision Study of Positronium: Testing Bound State QED Theory

    Full text link
    As an unstable light pure leptonic system, positronium is a very specific probe atom to test bound state QED. In contrast to ordinary QED for free leptons, the bound state QED theory is not so well understood and bound state approaches deserve highly accurate tests. We present a brief overview of precision studies of positronium paying special attention to uncertainties of theory as well as comparison of theory and experiment. We also consider in detail advantages and disadvantages of positronium tests compared to other QED experiments.Comment: A talk presented at Workshop on Positronium Physics (ETH Zurich, May 30-31, 2003
    corecore